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Introduction

Securing Integrated Circuit (IC) against fault injection attacks is an ongoing challenge

Developing effective on-chip detection sensors as countermeasures against
ElectroMagnetic Fault Injection (EMFI)

Study the mechanism involved in injecting faults due to EM disturbances

Test the effectiveness of the fully digital detector designed by Elbaze et al. embedded
in an AES accelerator
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EMFI models: sampling fault model

5 : (] Previous publications%3 explained EMFI models
C'u ‘5 through sF;mpIing fault modpels:
. E E i «  Occurs arounpl jche clgck rising edge within

susceptibility | EMPFI susceptibility windows

 Fault windows width is constant and
M°d°':>§( > X Other models X s X independent of the clock frequency

: E E E « Bit-set or bit-reset depend on the polarity of

S:Sampling fault model. the pulse

(] Based on an experimental results and modeling
of the EMFI effect on the Power Distribution
Network (PDN) of a generic IC

The probability of
The probability of  jnjecting faults is
injecting faults is limited
maximal

1S. Ordas, L. Guillaume-Sage, and P. Maurine, “Electromagnetic fault injection: the curse of flip-flops,” Journal of Cryptographic Engineering, vol. 7, no. 3, pp. 183-197, 2017.
2D. El-Baze, J.-B. Rigaud, and P. Maurine, “A fully-digital em pulse detector,” in 2016 Design, Automation Test in Europe Conference Exhibition (DATE), 2016, pp. 439—-444.

3 M. Dumont, P. Maurine, and M. Lisart, “Modeling of electromagnetic fault injection,” in 2019 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits
(EMC Compo), 2019, pp. 246-248



EMFI models: timing violations fault model

. Timing faults?!
=  EM disturbances coupling with the target’s PDN
= Increased critical path surpassing the clock period
= Bitflip

 EMFI-induced clock glitches?
= EM disturbances coupling with the target’s Clock Distribution Network (CDN)
= Shortened clock period
= Bitflip

1A. Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria, “Electromagnetic transient faults injection on a hardware and a software implementations of aes,” in 2012 Workshop on Fault Diagnosis and
Tolerance in Cryptography, Leuven, Belgium, September 9, 2012, 2012, pp. 7-15.

2M. Ghodrati, B. Yuce, S. Gujar, C. Deshpande, L. Nazhandali, and P. Schaumont, “Inducing local timing fault through em injection,” in 2018 55th ACM/ESDA/IEEE Design Automation

Conference (DAC). IEEE, 2018, pp. 1-6
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From sampling fault model to digital sensor
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» Two DFF toggling on CLK rising edges
> Resp. initialized at 0 (DFF1) and 1 (DFF3) to monitor both 10 and 021 transitions

D. El-Baze, J. -B. Rigaud and P. Maurine, "An Embedded Digital Sensor against EM and BB Fault Injection," 2016 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), 2016



From sampling fault model to digital sensor
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D. El-Baze, J. -B. Rigaud and P. Maurine, "An Embedded Digital Sensor against EM and BB Fault Injection," 2016 Workshop on 9

Fault Diagnosis and Tolerance in Cryptography (FDTC), 2016



How does this detector work?

Normal behavior
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How does this detector work?

Normal behavior Under attack behavior

Alarm is raised for any deviation in Q,Q,Q,;Q, states from the normal behavior

11
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Experimental setup: EMFI platform

» AV-Tech voltage pulse generator
* Pulse amplitude: up to +/- 750V
* Pulse-width: 4.5-20ns
* Pulse rise and fall time: 2 ns
* Remotely controlled using the telnet
protocol

» EM injection probe
*  Homemade EM probe

» FPGA target * Thickness of the copper wire: 0.2 mm
e Xilinx Artix7: XCZA200T-SBV484 * 4turns
* Process: CMOS 28 nm e Cylindrical ferrite core: 2 mm

* Easy rear side access
* Heat sink to be removed
* Nexys Video 7 board

13
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DUT block diagram: AES + sensors.
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FPGA implementation: Floorplan
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FPGA implementation: Floorplan

Vivado floorplan
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FPGA implementation: Floorplan
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FPGA implementation: Floorplan
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Experimental methodology

EM injection probe above the AES accelerator
sensitive area
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EMFI results: @100MHZ (+420V)
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Faults windows were consistent to the sampling fault model

Width of the detection windows (sensors): 2-3ns.

Width of the injection windows (AES): 1.5-2.5 ns. 22



EMFI results: @200MHZ (+420V)
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EMFI results: @200MHZ (+350V)
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Deep exploration of EMFI mechanisms
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Deep exploration of EMFI mechanisms
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Deep exploration of EMFI mechanisms

/ Timing fault
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Coexistence of two distinct fault injection mechanisms to explain EMFI!

!Nabhan, R., Dutertre, J. M., Rigaud, J. B., Danger, J. L., & Sauvage, L. (2023, April). Highlighting Two EM Fault Models While Analyzing »g
a Digital Sensor Limitations. In 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 1-2). IEEE



Outline

» Previous work
= EMFI models
= Fully digital detector

» Experimental setup
= EMFI platform
= DUT block diagram

» Experimental results
=  EMFI results
= Deep exploration of EMFI mechanisms
= Analysis of experimental results

» In-depth analysis of EMFI-induced clock glitches

» Conclusion

29



Analysis of experimental results

_ Impact on the detection window widths w.r.t

Sampling fault model!?3 Our experimental results

Clock frequency Constant and independent Decreased when the clock frequency
increased
Independent Dependent
Critical path Independent Reduced when shortening the

propagation delay path

Fault logic model Bit-set or bit-reset depend on Bit flip (Mix of bit-sets and bit-resets)
the polarity of the pulse No effect of the polarity pulse

» The faults injected at low frequency
= Broadly follow the sampling fault model
= Some discrepancies from the theory cast doubts on its validity
= Further exploration and tests are needed

1S. Ordas, L. Guillaume-Sage, and P. Maurine, “Electromagnetic fault injection: the curse of flip-flops,” Journal of Cryptographic Engineering, vol. 7, no. 3, pp. 183-197, 2017.

2D. El-Baze, J.-B. Rigaud, and P. Maurine, “A fully-digital em pulse detector,” in 2016 Design, Automation Test in Europe Conference Exhibition (DATE), 2016, pp. 439—-444. 30
3 M. Dumont, P. Maurine, and M. Lisart, “Modeling of electromagnetic fault injection,” in 2019 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits

(EMC Compo), 2019, pp. 246-248
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Normal operation
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EMFI effects on AES duration (+420V)

( The impact of EMFI attacks, induced by a

aeson [ \ LT,:L,_K positive pulse on the AES ON signal:
1 % AN S T WLM | H: *  When the clock signal is ‘1”:
TOnAs A nnannm The width of the AES ON signal is
RNANERRTRY BT A VRRR RO RVRRAVESR AP RAAN reduced by one clock period

|
i T T T Ciphertext is correctly received
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EMFI effects on AES duration (+420V)

( The impact of EMFI attacks, induced by a
positive pulse on the AES ON signal:

* When the clock signal is ‘1’

The width of the AES ON signal is
reduced by one clock period

Ciphertext is correctly received

*  When the clock signal is ‘0’

No effect

i I
Measure P1width(C3) _P2:width(C1) _P3:freq(C4) P P5.- - - PB- - -
value 1.200249 ps 10.106 ns 10.0000 MHz

)(2 1.2002 ps 1/8X= 8333 kHz
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EMFI effects on AES duration (+420V)
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EMFI effects on AES duration (+420V)
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EMFI effects on AES duration (+420V)
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EMFI effects on AES duration (-420V)

( The impact of EMFI attacks, induced by a
negative pulse on the AES ON signal:
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EMFI effects on AES duration (-420V)
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EMFI effects on AES duration (-420V)
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EMFI effects on AES duration
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EMFI-induced clock glitch principle (+420V)

T=100ns (f=10MHz)
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EMFI-induced clock glitch principle (+420V)

T=100ns (f=10MHz)

cmcﬂi Q

>

[ Glitch effect on
clock signal
>
& - :
? Clock glitch D.8-1.2 ns 0.8-1.2! ins|
injections windows | 47-48ns [
>

Y

The width of the susceptibility window caused by EMFI-induced clock glitches:

WEMFI = 5 — 2k

Where k is a constant margin during which clock edges get a small shift
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EMFI-induced clock glitch principle (-420V)
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The width of the susceptibility window caused by EMFI-induced clock glitches:

WEMFI = 5 — 2k

Where k is a constant margin during which clock edges get a small shift
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EMFI-induced clock glitches (t_:..i <§)

P T=20ns (f=50MHz)
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EMFI-induced clock glitches (t_:..i <§)
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EMFI-induced clock glitches (t_:..i <§)

T=20ns (f=50MHz)
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EMFl-induced clock glitches (t,;;c. <§)

T=20ns (f=50MHz)
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EMFI-induced clock glitches (t_;;;cas >§)
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EMFI-induced clock glitches (t_:..i >§)
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EMFI-induced clock glitches (t_;ca >§)
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How does the mechanism of EMFI-induced clock
glitch explain the triggering of the sensors?
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Study of the sensor’s detection capability
T
(When Critical <E)
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Study of the sensor’s detection capability
T
(When Critical <E)
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Study of the sensor’s detection capability
T
(when Ceritical <E)
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This explains why all injected faults are detected at low frequencies
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Sensor’s detection performance when changing clock

frequency and pulse amplitude
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Sensor’s detection performance when changing clock
frequency and pulse amplitude
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EMFI models: Timing violations fault model

EMFI models
1 ae j
Clock Power Rasat
distribution network distribution network distribution network
[ | l
Samplin Asynchronous
. reset (set)
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l faults

Bit-set or bit reset
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clock glitches (low ilack) polarity pulse
Bit flip Bit flip
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EMFI models: Timing violations fault model

EMFI models
I I

| |

Clock Power Reset
distribution network distribution network distribution network
1 a |
i€ e ’ g ; Asynchronous

Timing violations fault model Sampling reset (sef)

l l fault rlodel -

Bit-set or bit reset
depend on the
polarity pulse

EMFIl-induced Timing faults
clock glitches (low slack)

| l

Bit flip Bit flip

59



Outline

» Previous work
= EMFI models
= Fully digital detector

» Experimental setup
= EMFI platform
= DUT block diagram

» Experimental results
= EMFI results
= Deep exploration of EMFI mechanisms
= Analysis of experimental results

» In-depth analysis of EMFI-induced clock glitches

> Conclusion

60



Conclusion

» EMFI models: timing violations fault model
* EMPFI-induced clock glitches within the clock network
* Timing faults, which result from EM coupling with the PDN

» El-Baze sensor’s efficiency
* High detection at low frequencies
* No detection of timing faults obtained at high frequencies
» The risk of using an EMFI detection sensor based on a single fault model
» An enhanced explanation of the EMFI models to aid designers in developing

more effective detection sensors
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